Phys 402 Fall 2022 Homework 9 Due Wednesday, November 9, 2022 @ 10 AM

Mid-term EXAM 2 will be on Wednesday 16 November (10:00 AM to 11:50 AM), covering everything up to and including HW 9

 Griffiths, 3rd Edition, Problem 9.1 Griffiths, 3rd Edition, Problem 9.2 	[WKB for "shelf" potential in the infinite square well] [WKB as a perturbation expansion in ħ]
4. Griffiths, 3rd Edition, Problem 9.5 to tunnel through a triangular barr	[Zener Tunelling] { <i>Hint: The electron has rier of height</i> E_g (<i>the energy gap</i>) <i>on one side</i> }
5. Griffiths, 3 rd Edition, Problem 8.1	[Variational estimate of ground state energy in linear and quartic potentials]
6. Griffiths, 3 rd Edition, Problem 8.19	[Variational estimate of ground state

energy of Hydrogen]

Extra Credit 9:

The Schrödinger equation for the Macroscopic Quantum Wavefunction $\Psi(\mathbf{r},t)$ for a superconductor is $i\hbar \frac{\partial \Psi}{\partial t} = \frac{1}{2m^*} \left(-i\hbar \vec{\nabla} - q^* \vec{A} \right)^2 \Psi + q^* \phi \Psi$, where \vec{A} is the vector potential, ϕ is the scalar potential, m^* and q^* are the effective mass and charge of a Cooper pair. The macroscopic quantum wavefunction is interpreted as $\Psi(\vec{r},t) = \sqrt{n^*(r,t)} e^{i\theta(\vec{r},t)}$, $n^*(\vec{r},t)$ is the local number density and $\theta(\vec{r},t)$ is the space and time-dependent phase.

a) Under the assumption that the number density $n^*(\vec{r},t) = |\Psi(\vec{r},t)|^2$ is constant in space and time, derive the energy-phase relationship:

$$-\hbar\frac{\partial\theta}{\partial t} = \frac{1}{2n*}\Lambda J_s^2 + q*\phi$$

Continued on the next page ...

from the real part of the macroscopic quantum Schrödinger equation. Interpret this equation physically. Here the supercurrent density $\vec{J}_s = \frac{1}{\Lambda} (\frac{\hbar}{q*} \vec{\nabla} \theta - \vec{A})$ and

$$\Lambda = \frac{m^*}{n^* (q^*)^2}.$$

b) Now assume that $n^*(\vec{r},t)$ is NOT constant in either space or time. Show that the imaginary part of the macroscopic Schrödinger equation yields: $\frac{\partial n^*}{\partial t} = -\vec{\nabla} \bullet (n^* \vec{v}_s)$

Interpret this result physically (it may help to multiply both sides by q*). Note that the superfluid velocity is given by $\vec{v}_s = \frac{\hbar}{m^*} \vec{\nabla} \theta - \frac{q^*}{m^*} \vec{A}$

